Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Very few detections have been made of optical flashes contemporaneous with prompt high-energy emission from a gamma-ray burst (GRB). In this work, we present and analyze light curves of GRB-associated optical flashes and afterglows from the Transiting Exoplanet Survey Satellite (TESS). Our sample consists of eight GRBs with arcsecond-level localizations from the X-Ray Telescope on board the Neil Gehrels Swift Observatory (Swift). For each burst, we characterize the prompt optical emission and any observed afterglow, and constrain physical parameters for four of these bursts using their TESS light curves. This work also presents a straightforward method to correct for TESS's cosmic-ray mitigation strategy on 20 s timescales, which allows us to estimate the “true” brightness of optical flashes associated with prompt GRB emission. We also highlight TESS’s continuous wide-field monitoring capability, which provides an efficient means of identifying optical emission from GRBs and characterizing early time afterglow light curves. Based on empirical detection rates from Swift and the Fermi Gamma-ray Space Telescope, up to 10 GRBs per year may fall within the contemporaneous TESS field of view.more » « less
- 
            ABSTRACT Classical gamma-ray bursts (GRBs) have two distinct emission episodes: prompt emission from ultrarelativistic ejecta and afterglow from shocked circumstellar material. While both components are extremely luminous in known GRBs, a variety of scenarios predict the existence of luminous afterglow emission with little or no associated high-energy prompt emission. We present AT 2019pim, the first spectroscopically confirmed afterglow with no observed high-energy emission to be identified. Serendipitously discovered during follow-up observations of a gravitational-wave trigger and located in a contemporaneous TESS sector, it is hallmarked by a fast-rising ($$t \approx 2$$ h), luminous ($$M_{\rm UV,peak} \approx -24.4$$ mag) optical transient with accompanying luminous X-ray and radio emission. No gamma-ray emission consistent with the time and location of the transient was detected by Fermi-GBM or by Konus, placing constraining limits on an accompanying GRB. We investigate several independent observational aspects of the afterglow in the context of constraints on relativistic motion and find all of them are consistent with an initial Lorentz factor of $$\Gamma _0 \approx$$ 10–30 for the on-axis material, significantly lower than in any well-observed GRB and consistent with the theoretically predicted ‘dirty fireball’ scenario in which the high-energy prompt emission is stifled by pair production. However, we cannot rule out a structured jet model in which only the line-of-sight material was ejected at low-$$\Gamma$$, off-axis from a classical high-$$\Gamma$$ jet core, and an on-axis GRB with below-average gamma-ray efficiency also remains a possibility. This event represents a milestone in orphan afterglow searches, demonstrating that luminous optical afterglows lacking detected GRB counterparts can be identified and spectroscopically confirmed in real time.more » « less
- 
            Astronomers have found more than a dozen planets transiting stars that are 10–40 million years old1, but younger transiting planets have remained elusive. The lack of such discoveries may be because planets have not fully formed at this age or because our view is blocked by the protoplanetary disk. However, we now know that many outer disks are warped or broken2; provided the inner disk is depleted, transiting planets may thus be visible. Here we report observations of the transiting planet IRAS 04125+2902 b orbiting a 3-million-year-old, 0.7-solar-mass, pre-main-sequence star in the Taurus Molecular Cloud. The host star harbours a nearly face-on (30 degrees inclination) transitional disk3 and a wide binary companion. The planet has a period of 8.83 days, a radius of 10.7 Earth radii (0.96 Jupiter radii) and a 95%-confidence upper limit on its mass of 90 Earth masses (0.3 Jupiter masses) from radial-velocity measurements, making it a possible precursor of the super-Earths and sub-Neptunes frequently found around main-sequence stars. The rotational broadening of the star and the orbit of the wide (4 arcseconds, 635 astronomical units) companion are both consistent with edge-on orientations. Thus, all components of the system are consistent with alignment except the outer disk; the origin of this misalignment is unclear.more » « lessFree, publicly-accessible full text available November 21, 2025
- 
            Abstract We present 307 type Ia supernova (SN) light curves from the first 4 yr of the Transiting Exoplanet Survey Satellite mission. We use this sample to characterize the shapes of the early-time light curves, measure the rise times from first light to peak, and search for companion star interactions. Using simulations, we show that light curves must have noise <10% of the peak flux to avoid biases in the early-time light-curve shape, restricting our quantitative analysis to 74 light curves. We find that the mean power-law index of the early-time light curves isβ1= 1.93 ± 0.57, and the mean rise time to peak is 15.7 ± 3.5 days. The underlying population distribution forβ1may instead consist of a Gaussian component with mean 2.29, width 0.34, and a long tail extending to values less than 1.0. We find that the data can rarely distinguish between models with and without companion interaction models. Nevertheless, we find three high-quality light curves that tentatively prefer the addition of a companion interaction model, but the statistical evidence for the companion interactions is not robust. We also find two SNe that disfavor the addition of a companion interaction model to a curved power-law model. Taking the 74 SNe together, we calculate 3σupper limits on the presence of companion signatures to control for orientation effects that can hide companions in individual light curves. Our results rule out common progenitor systems with companions having Roche lobe radii >31R⊙(separations >5.7 × 1012cm, 99.9% confidence level) and disfavor companions having Roche lobe radii >10R⊙(separations >1.9 × 1012cm, 95% confidence level). Lastly, we discuss the implications of our results for the intrinsic fraction of single degenerate progenitor systems.more » « less
- 
            Abstract We present the discovery of TOI 762 A b and TIC 46432937 b, two giant planets transiting M-dwarf stars. Transits of both systems were first detected from observations by the NASA TESS mission, and the transiting objects are confirmed as planets through high-precision radial velocity observations carried out with Very Large Telescope/ESPRESSO. TOI 762 A b is a warm sub-Saturn with a mass of 0.251 ± 0.042MJ, a radius of 0.744 ± 0.017RJ, and an orbital period of 3.4717 days. It transits a mid-M-dwarf star with a mass of 0.442 ± 0.025M☉and a radius of 0.4250 ± 0.0091R☉. The star TOI 762 A has a resolved binary star companion, TOI 762 B, that is separated from TOI 762 A by 3.″2 (∼319 au) and has an estimated mass of 0.227 ± 0.010M☉. The planet TIC 46432937 b is a warm super-Jupiter with a mass of 3.20 ± 0.11MJand radius of 1.188 ± 0.030RJ. The planet’s orbital period isP= 1.4404 days, and it undergoes grazing transits of its early M-dwarf host star, which has a mass of 0.563 ± 0.029M☉and a radius of 0.5299 ± 0.0091R☉. TIC 46432937 b is one of the highest-mass planets found to date transiting an M-dwarf star. TIC 46432937 b is also a promising target for atmospheric observations, having the highest transmission spectroscopy metric or emission spectroscopy metric value of any known warm super-Jupiter (mass greater than 3.0MJ, equilibrium temperature below 1000 K).more » « less
- 
            Abstract Young terrestrial worlds are critical test beds to constrain prevailing theories of planetary formation and evolution. We present the discovery of HD 63433 d—a nearby (22 pc), Earth-sized planet transiting a young Sun-like star (TOI-1726, HD 63433). HD 63433 d is the third planet detected in this multiplanet system. The kinematic, rotational, and abundance properties of the host star indicate that it belongs to the young (414 ± 23 Myr) Ursa Major moving group, whose membership we update using new data from the third data release of the Gaia mission and TESS. Our transit analysis of the TESS light curves indicates that HD 63433 d has a radius of 1.1R⊕and closely orbits its host star with a period of 4.2 days. To date, HD 63433 d is the smallest confirmed exoplanet with an age less than 500 Myr, and the nearest young Earth-sized planet. Furthermore, the apparent brightness of the stellar host (V≃ 6.9 mag) makes this transiting multiplanet system favorable to further investigations, including spectroscopic follow-up to probe the atmospheric loss in a young Earth-sized world.more » « less
- 
            ABSTRACT A new generation of observatories is enabling detailed study of exoplanetary atmospheres and the diversity of alien climates, allowing us to seek evidence for extraterrestrial biological and geological processes. Now is therefore the time to identify the most unique planets to be characterized with these instruments. In this context, we report on the discovery and validation of TOI-715 b, a $$R_{\rm b}=1.55\pm 0.06\rm R_{\oplus }$$ planet orbiting its nearby (42 pc) M4 host (TOI-715/TIC 271971130) with a period $$P_{\rm b} = 19.288004_{-0.000024}^{+0.000027}$$ d. TOI-715 b was first identified by TESS and validated using ground-based photometry, high-resolution imaging and statistical validation. The planet’s orbital period combined with the stellar effective temperature $$T_{\rm eff}=3075\pm 75~\rm K$$ give this planet an installation $$S_{\rm b} = 0.67_{-0.20}^{+0.15}~\rm S_\oplus$$, placing it within the most conservative definitions of the habitable zone for rocky planets. TOI-715 b’s radius falls exactly between two measured locations of the M-dwarf radius valley; characterizing its mass and composition will help understand the true nature of the radius valley for low-mass stars. We demonstrate TOI-715 b is amenable for characterization using precise radial velocities and transmission spectroscopy. Additionally, we reveal a second candidate planet in the system, TIC 271971130.02, with a potential orbital period of $$P_{02} = 25.60712_{-0.00036}^{+0.00031}$$ d and a radius of $$R_{02} = 1.066\pm 0.092\, \rm R_{\oplus }$$, just inside the outer boundary of the habitable zone, and near a 4:3 orbital period commensurability. Should this second planet be confirmed, it would represent the smallest habitable zone planet discovered by TESS to date.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
